Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats.
نویسندگان
چکیده
BACKGROUND Excessive myocardial fibrosis impairs cardiac function in hypertensive hearts. Roles of transforming growth factor (TGF)-beta in myocardial remodeling and cardiac dysfunction were examined in pressure-overloaded rats. METHODS AND RESULTS Pressure overload was induced by a suprarenal aortic constriction in Wistar rats. Fibroblast activation (proliferation and phenotype transition to myofibroblasts) was observed after day 3 and peaked at days 3 to 7. Thereafter, myocyte hypertrophy and myocardial fibrosis developed by day 28. At day 28, echocardiography showed normal left ventricular fractional shortening, but the decreased ratio of early to late filling velocity of the transmitral Doppler velocity and hemodynamic measurement revealed left ventricular end-diastolic pressure elevation, indicating normal systolic but abnormal diastolic function. Myocardial TGF-beta mRNA expression was induced after day 3, peaked at day 7, and remained modestly increased at day 28. An anti-TGF-beta neutralizing antibody, which was administered intraperitoneally daily from 1 day before operation, inhibited fibroblast activation and subsequently prevented collagen mRNA induction and myocardial fibrosis, but not myocyte hypertrophy. Neutralizing antibody reversed diastolic dysfunction without affecting blood pressure and systolic function. CONCLUSIONS TGF-beta plays a causal role in myocardial fibrosis and diastolic dysfunction through fibroblast activation in pressure-overloaded hearts. Our findings may provide an insight into a new therapeutic strategy to prevent myocardial fibrosis and diastolic dysfunction in pressure-overloaded hearts.
منابع مشابه
Transforming Growth Factor- Function Blocking Prevents Myocardial Fibrosis and Diastolic Dysfunction in Pressure-Overloaded Rats
Background—Excessive myocardial fibrosis impairs cardiac function in hypertensive hearts. Roles of transforming growth factor (TGF)in myocardial remodeling and cardiac dysfunction were examined in pressure-overloaded rats. Methods and Results—Pressure overload was induced by a suprarenal aortic constriction in Wistar rats. Fibroblast activation (proliferation and phenotype transition to myofibr...
متن کاملHypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation?
Excessive myocardial fibrosis deteriorates diastolic function in hypertensive hearts. Involvement of macrophages is suggested in fibrotic process in various diseased situations. We sought to examine the role of macrophages in myocardial remodeling and cardiac dysfunction in pressure-overloaded hearts. In Wistar rats with suprarenal aortic constriction, pressure overload induced perivascular mac...
متن کاملRoles of intercellular adhesion molecule-1 in hypertensive cardiac remodeling.
Recently, we have shown that in rats with a suprarenal abdominal aortic constriction (AC), pressure overload induces early perivascular fibro-inflammatory changes (transforming growth factor [TGF]-beta induction and fibroblast proliferation) within the first week after AC and then causes the development of cardiac remodeling (myocyte hypertrophy and reactive myocardial fibrosis) associated with...
متن کاملTGF-beta1 overexpression: a mechanism of diastolic filling dysfunction in the aged population.
The prevalence of cardiovascular disease in the United States dramatically increases with age. A hallmark feature of the aged myocardium is increased fibrosis resulting in diastolic dysfunction. Moreover, the survival of patients subsequent to a myocardial infarction is inversely related to age because of a certain extent to maladaptive remodeling mediated by cardiac fibroblasts. Our hypothesis...
متن کاملImatinib mesylate attenuates myocardial remodeling through inhibition of platelet-derived growth factor and transforming growth factor activation in a rat model of hypertension.
Imatinib mesylate is a specific tyrosine kinase inhibitor that may block the platelet-derived growth factor and transforming growth factor pathways. These pathways are known to provoke fibroblast activation. We evaluated whether imatinib, by inhibiting these pathways, prevents diastolic dysfunction and attenuates myocardial remodeling using spontaneously hypertensive rats (SHRs). Eight-week-old...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 106 1 شماره
صفحات -
تاریخ انتشار 2002